Files
Comfyui-JSON-Manager/tab_timeline_wip.py
2026-01-04 19:10:07 +01:00

183 lines
7.6 KiB
Python

import streamlit as st
import json
from history_tree import HistoryTree
from utils import save_json
from streamlit_agraph import agraph, Node, Edge, Config
def render_timeline_wip(data, file_path):
tree_data = data.get("history_tree", {})
if not tree_data:
st.info("No history timeline exists.")
return
htree = HistoryTree(tree_data)
# --- 1. BUILD GRAPH ---
nodes = []
edges = []
sorted_nodes = sorted(htree.nodes.values(), key=lambda x: x["timestamp"])
for n in sorted_nodes:
nid = n["id"]
note = n.get('note', 'Step')
short_note = (note[:15] + '..') if len(note) > 15 else note
color = "#ffffff"
border = "#666666"
if nid == htree.head_id:
color = "#fff6cd"
border = "#eebb00"
if nid in htree.branches.values():
if color == "#ffffff":
color = "#e6ffe6"
border = "#44aa44"
nodes.append(Node(
id=nid,
label=f"{short_note}\n({nid[:4]})",
size=25,
shape="box",
color=color,
borderWidth=1,
borderColor=border,
font={'color': 'black', 'face': 'Arial', 'size': 14}
))
if n["parent"] and n["parent"] in htree.nodes:
edges.append(Edge(
source=n["parent"],
target=nid,
color="#aaaaaa",
type="STRAIGHT"
))
# --- UPDATED CONFIGURATION ---
config = Config(
width="100%",
# Increased height from 400px to 600px for better visibility
height="600px",
directed=True,
physics=False,
hierarchical=True,
layout={
"hierarchical": {
"enabled": True,
# Increased separation to widen the tree structure
"levelSeparation": 200, # Was 150
"nodeSpacing": 150, # Was 100
"treeSpacing": 150, # Was 100
"direction": "LR",
"sortMethod": "directed"
}
}
)
st.subheader("✨ Interactive Timeline")
st.caption("Click a node to view its settings below.")
# --- FIX: REMOVED 'key' ARGUMENT ---
selected_id = agraph(nodes=nodes, edges=edges, config=config)
st.markdown("---")
# --- 2. DETERMINE TARGET ---
target_node_id = selected_id if selected_id else htree.head_id
if target_node_id and target_node_id in htree.nodes:
selected_node = htree.nodes[target_node_id]
node_data = selected_node["data"]
# Header
c_h1, c_h2 = st.columns([3, 1])
c_h1.markdown(f"### 📄 Previewing: {selected_node.get('note', 'Step')}")
c_h1.caption(f"ID: {target_node_id}")
# Restore Button
with c_h2:
st.write(""); st.write("")
if st.button("⏪ Restore This Version", type="primary", use_container_width=True, key=f"rst_{target_node_id}"):
# --- FIX: Cleanup 'batch_data' if restoring a Single File ---
if "batch_data" not in node_data and "batch_data" in data:
del data["batch_data"]
# -------------------------------------------------------------
data.update(node_data)
htree.head_id = target_node_id
data["history_tree"] = htree.to_dict()
save_json(file_path, data)
st.session_state.ui_reset_token += 1
label = f"{selected_node.get('note')} ({target_node_id[:4]})"
st.session_state.restored_indicator = label
st.toast(f"Restored {target_node_id}!", icon="🔄")
st.rerun()
# --- 3. PREVIEW LOGIC (BATCH VS SINGLE) ---
# Helper to render one set of inputs
def render_preview_fields(item_data, prefix):
# A. Prompts
p_col1, p_col2 = st.columns(2)
with p_col1:
val_gp = item_data.get("general_prompt", "")
st.text_area("General Positive", value=val_gp, height=80, disabled=True, key=f"{prefix}_gp")
val_sp = item_data.get("current_prompt", "") or item_data.get("prompt", "")
st.text_area("Specific Positive", value=val_sp, height=80, disabled=True, key=f"{prefix}_sp")
with p_col2:
val_gn = item_data.get("general_negative", "")
st.text_area("General Negative", value=val_gn, height=80, disabled=True, key=f"{prefix}_gn")
val_sn = item_data.get("negative", "")
st.text_area("Specific Negative", value=val_sn, height=80, disabled=True, key=f"{prefix}_sn")
# B. Settings
s_col1, s_col2, s_col3 = st.columns(3)
s_col1.text_input("Camera", value=str(item_data.get("camera", "static")), disabled=True, key=f"{prefix}_cam")
s_col2.text_input("FLF", value=str(item_data.get("flf", "0.0")), disabled=True, key=f"{prefix}_flf")
s_col3.text_input("Seed", value=str(item_data.get("seed", "-1")), disabled=True, key=f"{prefix}_seed")
# C. LoRAs
with st.expander("💊 LoRA Configuration", expanded=False):
l1, l2, l3 = st.columns(3)
with l1:
st.text_input("L1 Name", value=item_data.get("lora 1 high", ""), disabled=True, key=f"{prefix}_l1h")
st.text_input("L1 Str", value=str(item_data.get("lora 1 low", "")), disabled=True, key=f"{prefix}_l1l")
with l2:
st.text_input("L2 Name", value=item_data.get("lora 2 high", ""), disabled=True, key=f"{prefix}_l2h")
st.text_input("L2 Str", value=str(item_data.get("lora 2 low", "")), disabled=True, key=f"{prefix}_l2l")
with l3:
st.text_input("L3 Name", value=item_data.get("lora 3 high", ""), disabled=True, key=f"{prefix}_l3h")
st.text_input("L3 Str", value=str(item_data.get("lora 3 low", "")), disabled=True, key=f"{prefix}_l3l")
# D. VACE
vace_keys = ["frame_to_skip", "vace schedule", "video file path"]
has_vace = any(k in item_data for k in vace_keys)
if has_vace:
with st.expander("🎞️ VACE / I2V Settings", expanded=False):
v1, v2, v3 = st.columns(3)
v1.text_input("Skip Frames", value=str(item_data.get("frame_to_skip", "")), disabled=True, key=f"{prefix}_fts")
v2.text_input("Schedule", value=str(item_data.get("vace schedule", "")), disabled=True, key=f"{prefix}_vsc")
v3.text_input("Video Path", value=str(item_data.get("video file path", "")), disabled=True, key=f"{prefix}_vid")
# --- DETECT BATCH VS SINGLE ---
batch_list = node_data.get("batch_data", [])
if batch_list and isinstance(batch_list, list) and len(batch_list) > 0:
st.info(f"📚 This snapshot contains {len(batch_list)} sequences.")
for i, seq_data in enumerate(batch_list):
seq_num = seq_data.get("sequence_number", i+1)
with st.expander(f"🎬 Sequence #{seq_num}", expanded=(i==0)):
# Unique prefix for every sequence in every node
prefix = f"p_{target_node_id}_s{i}"
render_preview_fields(seq_data, prefix)
else:
# Single File Preview
prefix = f"p_{target_node_id}_single"
render_preview_fields(node_data, prefix)